
October 23, 2010 – Tip MB003: Modular Programming in MapBasic

© TWIAV.NL – www.twiav.nl Page 1 of 3 - Modular Programming in MapBasic

Modular Programming in MapBasic

This document describes how to break down the code of a larger,
more complex MapBasic application into several modules.

If you are developing a large, complex application, your program could
eventually contain thousands of lines of code. You could type the entire
program into a single file, i.e. in one MapBasic Program Source (*.mb) file.
However, you can also decide to split the application in several modules.
The practice of breaking large programs down into smaller, more
manageable pieces is known as modular programming.

What are the benefits of modular programming?

• You can divide your program into numerous, small files. Modular
programs are generally easier to maintain in the long run.

• When more programmers are working on a project at the same
time, each programmer can work on a separate module.

• You can easily reuse modules in multiple projects – this avoids the
need to reinvent the wheel over and over again.

Sample Program

The description of the building blocks of a modular project in this
document is based on a sample project: Project.MBX.

You can download the source code of this Project.MBX from the following
location: http://www.twiav.nl/php/mbsampleM2.php#mopr

This application demonstrates how to set up a MapBasic project consisting
of several modules.

The actual application - showing current date and current time - is not that
exciting at all.

It is the source files you should be after:

• Project.mbp
• ProjectUI.mb, Functions.mb, ModuleOne.mb and ModuleTwo.mb
• Project.def

You can compile the source files (*.mb) to become object files (*.mbo)
and you can link the object files to become an executable application file
(*.mbx).

This little app is purely meant to be an example on how to set up your own
projects.

© TWIAV.NL – www.twiav.nl Page 2 of 3 - Modular Programming in MapBasic

How to set up a modular project?

The files which together make up a project are:

• The MapBasic Project File (*.mbp). The project file tells the
MapBasic linker how to combine separate modules into a
single, executable application.

• One or more MapBasic Program Source files (*.mb). These

are the modules of the project. When you compile a single
module that is part of a multiple-module project, the
MapBasic compiler creates a MapBasic Object File (*.mbo)

• One or more MapBasic Include Files (*.def). This file

contains information which is shared across modules, e.g.
declarations of global variables; declarations of sub
procedures; declarations of functions; define codes; etc.

Project File

A MapBasic Project file has the extension *.mbp.

Below you see an example of the content of a project file:

[Link]
Application=Project.mbx
Module=ProjectUI.mbo
Module=Functions.mbo
Module=ModuleOne.mbo
Module=ModuleTwo.mbo

• The first line should contain the keyword [Link]
• The second line should contain the text

Application=appfilename (where appfilename

specifies the file name of the executable file you want to
create)

• All further lines should contain the text
Module=modulename (where modulename specifies
the name of a MapBasic object file).

If you add more modules to the project at a later date, remember to
add appropriate Module= lines to the project file.

Source Files

A MapBasic Source file has the extension *.mb.

The source files do contain the actual code.

In general, when you compile a source file MapBasic will try to create
an executable application file (*.mbx). If the source file is part of a
larger project, MapBasic builds a MapBasic Object file (*.mbo)
instead of an executable file (*.mbx).

MapBasic will build an object file whenever:

• the Main procedure is missing from the module that you
are compiling. (Please note: an application can only have
one Main procedure, so only one object file can hold this
procedure; all others won’t.)

• the module contains calls to functions and procedures that

are not in the file. Calling a function or sub procedure located
in another module is known as an external reference.

For example:

1. In the file ProjectUI.mb some User Interface is created: a
menu and an About box (with an Exit button to halt/remove
the application). This module contains the Main procedure,

© TWIAV.NL – www.twiav.nl Page 3 of 3 - Modular Programming in MapBasic

but it also calls two procedures - ModuleOne and
ModuleTwo – which are located in other modules.

2. The module ModuleOne calls the function LongDate which

is located in the module Functions.

Include files

Within a project you want to be able to i) call functions and
procedures from other modules, and ii) to share variables with other
modules.

To make all the functions, procedures and global variables known to
all the modules in the project it is best to place all the relevant
statements in one include file (also called a definitions file) and use
the Include statement to incorporate these definitions in each
module.

When MapBasic is compiling a program file and encounters an
Include statement, the entire contents of the included file are
inserted into the program file. The file specified by an Include
statement should be a text file, containing only legitimate MapBasic
statements.

For example:

1. Each of the modules in our sample project does contain the
line: Include "Project.def"

2. The file Project.def does contain several statements

(Include, Declare Sub, Declare Function, Define and
Global).

Compiling and Linking a Project

To create an executable application file from your project you have to
follow these steps:

1. Compile each module that is used in the project.

2. Link your application. MapBasic reads the object (*.mbo)
files listed in the project file. If there are no link errors,
MapBasic builds an executable (*.mbx) file. If there are link
errors, MapBasic displays an error message.

(The object files created by the MapBasic compiler cannot be linked
using any other linker, such as a C-language linker. Only the
MapBasic linker can link MapBasic object modules.)

Using Notepad++?

If you are using Notepad++ to develop your MapBasic applications,
you can configure your text editor to compile all object files, link the
project file and run the resulting application, all with one mouse click
or keystroke.

For instructions, see:
http://www.twiav.nl/php/mapbasic2.php#link

